domingo, maio 17, 2009

7 - NÚMEROS FRACIONARIOS E DECIMAIS

NÚMEROS FRACIONÁRIOS E DECIMAIS


Durante muito tempo, os números naturais eram os únicos números que o homem utilizava. Mas, com o passar do tempo, o homem foi encontrando situações mais difíceis para resolver. No antigo Egito, por exemplo, as terras próximas ao rio Nilo eram muito disputadas por isso os faraós tinham funcionários que mediam e demarcavam os terrenos.
Eles usavam cordas com nós separados sempre pela mesma distância. Em muitos casos, principalmente para efetuar medições, precisou criar outros números que não fossem apenas os números naturais. Surgiram assim, os números fracionários ou racionais.

Para representar os números fracionários foi criado um símbolo, que é a fração. Sendo a e b números racionais e b ≠ 0, indicamos a divisão de a por b com o símbolo a : b ou, ainda a/b

Chamamos o símbolo a/b de fração.

Assim, a fração 10/2 é igual a 10 : 2

Na fração a/b, a é o numerador e b é o denominador

Efetuando, por exemplo, a divisão de 10 por 2, obtemos o quociente 5.

Assim, 10/2 é um número natural, pois 10 é múltiplo de 2.

Mas efetuando a divisão de 3 por 4 não obtemos um número natural. Logo ¾ não é um número natural. A fração envolve a idéia de alguma coisa que foi dividida em partes iguais.

Agenor comeu ¾ de uma barra de chocolate. Que quantidade de chocolate Agenor comeu? Que parte da barra de chocolate sobrou?

Dividindo o chocolate em 4 partes, iguais temos;

Agenor comeu ¾ , portanto sobrou ¼



LEITURA DE UMA FRAÇÃO

Algumas frações recebem nomes especiais: as que têm denominadores 2,3,4,5,6,7,8,9

½ um meio

¼ um quarto

1/6 um sexto

1/8 um oitavo

2/5 dois quintos

9/8 nove oitavos

1/3 um terço

1/5 um quinto

1/7 um sétimo

1/9 um nono

4/9 quatro nonos

16/9 dezesseis nonos


as que tem denominadores 10, 100, 1000, etc.............

1/10 um décimo

1/100 um centésimo

1/1000 um milésimo

7/100 sete centésimos


as decimais que são lidas acompanhadas da palavra avos :

1/11 um onze avos

7/120 sete cento e vinte avos

4/13 quatro treze avos

1/300 um trezentos avos

5/19 cinco dezenove avos

6/220 seis duzentos e vinte avos



EXERCÍCIOS

1) indique as divisões em forma de fração:

a) 14 : 7 = (R: 14/7)
b) 18 : 8 = (R: 18/8)
c) 5 : 1 = (R: 5/1)
d) 15 : 5 = ( R: 15/5)
e) 18 : 9 = (R: 18/9)
f) 64 : 8 = (R: 64/8)

2) Calcule o quociente das divisões

a) 12/3 = (R:4)
b) 42/21 = (R: 2)
c) 8/4 = (R: 2)
d) 100/10 = (R: 10)
e) 56/7 = (R: 8)
f) 64/8 = (R: 8 )

3) Em uma fração, o numerador é 5 e o denominador é 6

a) Em quantas partes o todo foi dividido? (R: 6)
b) Quantas partes do todo foram consideradas? (R: 5)

4) Escreva como se lêem as seguintes frações:

a) 5/8 (R: cinco oitavos)
b) 9/10 (R: nove décimos)
c) 1/5 (R: um quinto)
d) 4/200 ( R: quatro duzentos avos)
e) 7/1000 (R: sete milésimos)
f) 6/32 (R: seis trinta e dois avos)


TIPOS DE FRAÇÕES

a) Fração própria : é aquela cujo o numerador é menor que o denominador.
Exemplos : 2/3, 4/7, 1/8

b) Fração imprópria: é a fração cujo numerador é maior ou igual ao denominador
Exemplo: 3/2, 5/5

c) Fração aparente: é a fração imprópria cujo o numerador é múltiplo do denominador
Exemplo: 6/2, 19/19, 24/12, 7/7


EXERCÍCIO

1) Classifique as frações em própria, imprópria ou aparente:

a) 8/9 (R: própria)
b) 10/10 (R: imprópria e aparente)
c) 26/13(R: imprópria e aparente)
d) 10/20 (R: própria)
e) 37/19 (R: imprópria)
f) 100/400 (R: própria)



FRAÇÕES EQUIVALENTES

Para encontrar frações equivalentes, multiplicamos o numerador e o denominador da fração ½ por um mesmo numero natural diferente de zero.

Assim: ½, 2/4, 4/8, 3/6, 5/10 são algumas frações equivalentes a 1/2




SIMPLIFICANDO FRAÇÕES

Cláudio dividiu a pizza em 8 partes iguais e comeu 4 partes. Que fração da pizza ele comeu?

Cláudio comeu 4/8 da pizza. Mas 4/8 é equivalente a 2/4. Assim podemos dizer que Cláudio comeu 2/4 da pizza.
A fração 2/4 foi obtida dividindo-se ambos os termos da fração 4/8 por 2 veja:

4/8 : 2/2 = 2/4

Dizemos que a fração 2/4 é uma fração simplificada de 4/8.
A fração 2/4 ainda pode ser simplificada, ou seja, podemos obter uma fração equivalente dividindo os dois termos da fração por 2 e vamos obter ½



OPERAÇÕES COM NÚMEROS RACIONAIS ABSOLUTOS (FRAÇÕES)


ADIÇÃO E SUBTRAÇÃO

1°) Como adicionarmos ou subtrairmos números fracionários escritos sob a forma de fração de denominadores iguais

Conclusão: Somamos os numeradores e conservamos o denominador comum.

Exemplo:
a) 5/7 – 2/7 = 3/7
b) 4/9+ + 2/9 = 6/9 = 2/3
c) 3/5 – 1/5 = 2/5



Exercícios

1) Efetue as adições

a) 3/6 + 2/6 = (R: 5/6)
b) 13/7 + 1/7 = (R: 14/7)
c) 2/7+ 1/7 + 5/7 = (R: 8/7)
d) 4/10 + 1/10 + 3/10 = (R: 8/10)
e) 5/6 + 1/6 = (R: 1)
f) 8/6 + 6/6 = (R: 14/6) = (R: 7/3)
g) 3/5 + 1/5 = (R: 4/5)


2) Efetue as subtrações:

a) 7/9 – 5/9 = (R: 2/9)
b) 9/5 -2/5 = (R: 7/5)
c) 2/3 – 1/3 = (R: 1/3)
d) 8/3 – 2/3 = (R: 6/3)
e) 5/6 – 1/6 = (R: 2/3)
f) 5/5 – 2/5 = (R: 3/5)
g) 5/7 – 2/7 = (R: 3/7)

3) Efetue as operações:

a) 5/4 + ¾ - ¼ = (R: 7/4)
b) 2/5 + 1/5 – 3/5 = (R: 0/5)
c) 8/7 – 3/7 + 1/7 = (R: 6/7)
d) 7/3 – 4/3 – 1/3 = (R: 2/3)
e) 1/8 + 9/8 -3/8= (R: 7/8)
f) 7/3 – 2/3 + 1/3 = (R:6/3 ) = (R: 2)
g) 7/5 + 2/5 – 1/5 = (R: 8/5)
h) 5/7 – 2/7 – 1/7 = (R: 2/7)


2°) Como adicionarmos ou subtrairmos números fracionários escritos sob a forma de fração de denominadores diferentes

conclusão: Quando os denominadores são diferentes fazemos o m.m.c. dos denominadores .

exemplo:

a) 2/3 +1/2 = 4/6 + 3/6 = 7/6

3, 2 I 2
3, 1 I 3
1, 1 I ---2 . 3 = 6



b) 2/3 – ¼ = 8/12 – 3/12 = 5/12

3, 4 I 2
3, 2 I 2
3, 1 I 3
1, 1 I ----2 . 2. 3 = 12

exercícios

1) Efetue as adições:

a) 1/3 + 1/5 = (R: 8/15)
b) ¾ + ½ = (R: 5/4)
c) 2/4 + 2/3 = (R: 14/12)
d) 2/5 + 3/10 = (R: 7/10)
e) 5/3 + 1/6 = (R: 11/6)
f) ¼ + 2/3 + ½ = (R: 17/12)
g) ½ + 1/7 + 5/7 = (R: 19/14)
h) 3/7 + 5/2 + 1/14 = (R: 42/14)
i) 4/5 + 1/3 + 7/6 = (R: 69/30)
j) 1/3 + 5/6 + ¾ = (R: 23/12)
k) ½ + 1/3 + 1/6 = (R: 1)
l) 10 + 1/8 + ¾ = (R: 85/8)
m) 1/3 + 3/5 = (R:14/15)
n) ¾ + 6/7 = (R: 45/28)
o) 5/7 + ½ = (R: 17/14)
p) ½ + 1/3 = (R: 5/6)
q) 3/14 + 3/7 = (R: 9/14)
r) 3/5 + ¾ + ½ = (R: 37/20)
s) 1/12 + 5/6 + ¾ = (R: 20/12)
t) 8 + 1/5 + 4/5 = (R: 45/5)
u)

2) efetue as subtrações

a) 5/4 – ½ = (R: 3/4)
b) 3/5 – 2/7 = (R: 11/35)
c) 8/10 – 1/5 = (R: 6/10)
d) 5/6 – 2/3 = (R: 1/6)
e) 4/3 – ½ = (R: 5/6)
f) 13/4 – 5/6 = (R: 29/12)
g) 7/8 – 1/6 = (R: 17/24)
h) 4/5 – 1/3 = (R: 7/15)
i) 3/5 – ¼ = (R: 7/20)
j) 10/11 – ½ = (R: 9/22)
l) 6/4 – 2/3 = (R: 10/12)
m) 5/8 – ½ = (R: 1/8)
n) 4/5 – ¼ = (R: 11/20)
o) ¾ - 5/8 = (R: 1/8)
p) 9/11 – ½ = (R: 7/22)
q) 7 – 2/3 = (R: 19/3)
r) 4/2 - 2/3 = (R: 8/6)
s) 3/2 - 2/3 = (R: 5/6)
t) 1/2 - 1/3 = (R: 1/6)
u) 3/2 - 1/4 = (R: 5/4)


3) Efetue

a) 2 + 5/3 = (R: 11/3)
b) 7 + ½ = (R: 15/2)
c) 3/5 + 4 = (R: 23/5)
d) 6/7 + 1 = (R: 13/7)
e) 8 + 7/9 = (R: 79/9)
f) 5 – ¾ = (R: 17/4)
g) 2 – ½ = (R: 3/2)
h) 7/2 – 3 = (R: 1/2)
i) 11/2 – 3 = (R: 5/2)
j) 7/4 – 1 = (R: 3/4)
k) 1 – ¼ = (R: ¾ )
l) ½ - 1/3 = (R: 1/6)
m) ½ + ¼ = (R: ¾)
n) 1 + 1/5 = (R: 6/5)
o) 1 – 1/5 = (R: 4/5)

4) Calcule o valor das expressões:

a) 3/5 + ½ - 2/4 = (R: 12/20)
b) 2/3 + 5/6 – ¼ = (R: 15/12)
c) 4/5 – ½ + ¾ = (R: 21/20)
d) 5/7 – 1/3 + ½ = (R: 37/42)
e) 1/3 + ½ - ¼ = (R: 7/12)
f) ¾ - ½ + 1/3 = (R: 7/12)
g) 5/6 – ½ + 2/3 = (R: 1)
h) 4/5 – ¾ + ½ = (R: 11/20)
i) ½ + 2/3 + 2/5 + 1/3 = (R: 57/30)
j) 6/5 – ¾ + ½ - 2/3 = (R: 17/60)
l) 1/6 + 5/4 + 2/3 = (R: 25/12)



MULTIPLICAÇÃO


Vamos Calcular : 2/3 x 4/5 = 8/15

Conclusão : multiplicamos os numeradores entre si e os denominadores entre si

Exemplo:

a) 4/7 x 3/5 = 12/35

b) 5/6 x 3/7 = 15//42 = 5/14 simplificando

EXERCICIOS

1) Efetue as multiplicações

a) ½ x 8/8 = (R: 8/16)
b) 4/7 x 2/5 = (R: 8/35)
c) 5/3 x 2/7 = (R: 10/21)
d) 3/7 x 1/5 = (R: 3/35)
e) 1/8 x 1/9 = (R: 1/72)
f) 7/5 x 2/3 = (R: 14/15)
g) 3/5 x ½ = (R: 3/10)
h) 7/8 x 3/2 = (R: 21/16)
i) 1/3 x 5/6 = (R: 5/18)
j) 2/5 x 8/7 = (R: 16/35)
k) 7/6 x 7/6 = (R: 49/36)
l) 3/7 x 5/2 = (R: 15/14)
m) 3/10 x 5/9 = (R: 15/90)
n) 2/3 x ¼ x 5/2 = (R: 10/24)
o) 7 x ½ x 1/3 = (R: 7/6)
p)

2) Efetue as multiplicações

a) 4/3 x ½ x 2/5 = (R: 8/30)
b) 1/5 x ¾ x 5/3 = (R: 15/60)
c) ½ x 3/7 x 1/5 = (R: 3/70)
d) 3/2 x 5/8 x ¼ = (R: 15/64)
e) 5/4 x 1/3 x 4/7 = (R: 20/84)

3) Efetue as multiplicações
a) 2 x 5/3 = (R: 10/3)
b) 3 x 2/5 = (R: 6/5)
c) 1/8 x 5 = (R: 5/8)
d) 6/7 x 3 = (R: 18/7)
e) 2 x 2/3 x 1/7 = (R: 4/21)
f) 2/5 x 3 x 4/8 = (R: 24/40)
g) 5 x 2/3 x 7 = (R: 70/3)
h) 7/5 x 2 x 4 = (R: 56/5)
i) 8 x 2/3 = (R: 16/3)
j) 5/9 x 0/6 = (R: 0/54)
k) 1/7 x 40 = (R: 40/7)
l) ½ x 1/3 x ¼ x 1/5 = (R: 1/120)
m) 1 x 2/3 x 4/3 x 1/10 = (R: 8/90)


DIVISÃO

Vamos calcular ½ : 1/6

Para dividir uma fração por outra, basta multiplicar a primeira fração pela inversa da segunda

Assim: ½ : 1/6 = ½ x 6/1 = 6/2 = 3

Exemplos:

a) 2/3 : 5/2 = 2/3 x 2/5 = 4/15
b) 7/9 : 1/5 = 7/9 x 5/1 = 35//9
c) 3/7 : 4 = 3/7 x ¼ = 3/28

Exercícios

1) Efetue as divisões
a) ¾ : 2/5 = (R: 15/8)
b) 5/7 : 2/3 = (R: 15/14)
c) 4/5 : 3/7 = (R: 28/15)
d) 2/9 : 7/8 = (R: 16/63)
e) 1/6 : 5/3 = (R: 3/30) ou (3/10)
f) 7/8 : ¾ = (R: 28/24) ou (7/6)
g) 8/7 : 9/3 = (R: 24/63)
h) 4/5 : 2/5 = (R: 20/10) ou (2/1) ou ( 2)
i) 5/8 : ¾ = (R: 20/24) ou (5/6)
j) 2/9 : 4/7 = (R: 14/36) ou (7/18)


2) Efetue as divisões :

a) 5 : 2/3 = (R: 15/2)
b) 4 : 1/7 = (R: 28/1) ou (28)
c) 8/9 : 5 = (R: 8/45)
d) 3/7 : 3 = (R: 3/21)
e) 7/3 : 4/7 = (R: 49/12)
f) 2/3 : ½ = (R: 4/3)
g) 4/5 : 2/3 = (R: 12/10)
h) 2/7 : 5/3 = (R: 6/35)
i) 3/7 : 2 = (R: 3/14)
j) 3/2 : 5/7 = (R: 21/10)
k) 3/8 : 4/7 = (R: 21/32)


POTENCIAÇÃO

Vamos calcular a potência (2/5)³= 2/5 x 2/5 x 2/5 = 8/125

Conclusão: para elevar uma fração a um expoente, elevam-se o numerador e o denominador da fração desse expoente.

Exemplo

a) (5/7)² = 5²/ 7² = 25/49

1) Toda fração de expoente 1 dá como resultado a própria fração

Exemplo: (3/8)¹ = 3/8

2) Toda a fração elevada ao expoente zero dá como resultado o número 1

Exemplo : (3/4)⁰ = 1


Exercícios

1) Calcule as potências

a) (2/3)² = (R: 4/9)
b) (4/7)² = (R: 16/49)
c) (7/5)² = (R: 49/25)
d) (1/3)² = (R: 1/9)
e) (5/3)² = (R: 25/9)
f) (7/30)⁰ = ( R: 1)
g) (9/5)¹ = (R: 9/5)
h) (2/3)³ = (R: 8/27)
i) (1/5)³ = (R: 1/125)
j) (1/2)² = (R: 1/4)
k) (2/3)⁴= (R: 16/81)
l) (2/5)¹ = (R: 2/5)
m) (3/11)² = (R: 9/121)
n) (9/4)⁰ = (R: 1)
o) (12/13)² = (R: 144/169)
p) (1/2)⁵ = (R: 1/32)
q) (3/7)³ = ( R: 27/343)


RAIZ QUADRADA DE NÚMEROS RACIONAIS (FRAÇÃO)

Sabemos que :

√25 = 5
√49 = 7
√25/49 = 5/7

Conclusão:

Para extrair a raiz quadrada de um número fracionário, extraem-se a raiz quadrada do numerador e a raiz quadrada do denominador.

Exemplos

a) √4/9 = 2/3
b) √1/36 = 1/6

Exercícios

1) Calcule a raiz quadrada

a) √9/16 = (R: 3/4)
b) √1/25 = (R:1/5)
c) √9/25 = (R: 3/5)
d) √16/49 = (R: 4/7)
e) √64/25 = (R: 8/5)
f) √1/9 = (R: 1/3)
g) √25/81 = (R: 5/9)
h) √49/36 = (R: 7/6)
i) √1/100 = (R: 1/10)








EXPRESSÕES COM NÚMEROS RACIONAIS

As expressões com números racionais devem ser resolvidas obedecendo à seguinte ordem de operações:

1°) Potenciação e Radiciação
2°) Multiplicação e Divisão
3°) Adição e subtração

Essas operações são realizadas eliminando :

1°) Parênteses
2°) Colchetes
3°) Chaves

Exemplos:

1) 1/5 + 4/5 x 1/3 =
    1/5 + 4/15 =
    3/15 + 4/15 =
    7/15


2) (3/5)² + 2/5 x ½ =
     9/25 + 2/10 =
     18/50 + 10/50 =
     = 28/50 ou  14/25

3) ( 4 + ½ ) – 1/5 : 2/3 =
    ( 8/2 + ½ ) – 1/5 : 2/3 =
       9/2 – 1/5 : 2/3 =
       9/2 – 1/5 x 3/2 =
       9/2 – 3/10 =
       45/10 – 3/10 =
    = 42/10 ou  21/5


Exercícios


1) Calcule o valor das expressões:


a) 5/8 + ½ -2/3 = (R: 11/24)
b) 5 + 1/3 -1/10 = (R: 157/30)
c) 7/8 – ½ - ¼ = (R: 1/8)
d) 2/3 + 3 + 1/10 = (R: 113/30)
e) ½ + 1/6 x 2/3 = (R: 11/18)
f) 3/10 + 4/5 : ½ = (R: 19/10)
g) 2/3 x ¾ - 1/6 = (R: 4/12 ou 1/3)
h) 7 – ¼ + 1/7 = (R: 193/28)
i) 3 x ½ - 4/5 = (R: 7/10)
j) 7/4 – ¼ x 3/2 = ( R: 11/8)
k) ½ + 3/2 x ½ = ( R: 5/4)
l) 1/10 + 2/3 x ½ = (R: 13/30)

2) Calcule o valor da expressão:

a) 7 x ½ + (4/5)² = (R: 207/50)
b) (1/3)² + 2/5 x ½ = (R: 28/90 ) ou (14/45)
c) (1/2)² : ¾ + 5/3 = ( R: 24/12) ou (2)
d) (1/3)² x 5/2 + ½ = ( R: 14/18) ou (7/9)
e) 2/5 x ½ + ( 3/5)² = ( R: 28/50) ou (14/25)
f) (2/3)²+ 4 + 1/3 -1/2 = ( R: 77/18)

3) Calcule o valor da expressão:

a) 5/6 – ( 1/3 + 1/5 ) = ( R: 9/30) ou (3/10)
b) 2/5 x ( ¾ + 5/8) = ( R: 22/40) ou (11/20)
c) ½ : ( 2/3 + ¾ ) = ( R: 12/34) ou ( 6/17)
d) ( 1/3 + ½ ) : 5/6 = (R: 30/30) ou (1)
e) ½ . ( 2/3 + ¾ ) = ( R: 17/24)
f) ( 5/7 x 2/3 ) : 1/6 = (R: 60/21)
g) (3/2 - 2/5 ) + ( 5/4 - 2/3) = (R: 101/60)
h) 1 + (1/2 - 1/5) - (7/4 - 5/4) = (R: 16/20)
i) ( 7/8 - 5/6) + ( 8/9 - 7/9) = (R: 11/72)



4) Calcule o valor das expressões

a) ( ¾ x ½ + 2/5 ) + ¼ = (R: 41/40)
b) ( 2/3 x ¼ ) + ( 1/3 x ½ ) = (R: 4/12)
c) ( 5- ½ ) : ( 2 – 1/3) = ( R: 27/10)
d) ( 3 x 5/2 ) : ( 1/5 + 1/3 ) = (R: 225/16)
e) ( 3 x ¾ ) + ( 3 x ¼ ) = ( R: 12/4)
f) ( 3 + ½ ) x 4/5 – 3/10 = (R: 25/10)

5) Calcule o valor das expressões

a) ½ : 1/3 + ¾ x 5/9 = ( R: 69/36)
b) 3/8 x ( ½ x 4/3 + 4/3 ) = (R: 36/48)
c) ( 1/3 + ¼ ) : 5/2 + 2/3 = (R: 54/60)
d) ( ¾ + ¼ - ½ ) : 3/2 = (R: 8/11)
d) ( 1 + 1/3 )² x 9/4 + 6 = (R: 360/36)
e) 1 + (3/2)² + ( 1 + ¼ ) = (R: 18/4)


6) calcule o valor das expressões


PROBLEMAS COM NÚMEROS RACIONAIS

Os problemas com números racionais absolutos são geralmente resolvidos da seguinte forma :

1°) Encontrando o valor de uma unidade fracionária

2°) obtendo o valor correspondente da fração solicitada

exemplo

Eu tenho 60 fichas, meu irmão tem ¾ dessa quantidade. Quantas fichas tem o meu irmão ?

60 x ¾ = 180/4 = 45

R: O meu irmão tem 45 fichas

EXERCICIOS

1) Determine 2/3 de R$ 1200,00 (R: 800)

2) Numa caixa existem 80 bombons. Calcule 2/5 desses bombons. (R: 32)

3) O comprimento de uma peça de tecido é de 42 metros. Quanto medem 3/7 dessa peça ? (R: 18 m)

4) Um automóvel percorreu 3/5 de uma estrada de 600 km. Quantos quilômetros percorreu? (R: 360 km)

5) Numa viagem de 72 km, já foram percorridos ¾ . Quantos quilômetros já foram percorridos? (R : 54 km)

6) Um livro tem 240 páginas., Você estudou 5/6 do livro. Quantas paginas você estudou? (R: 200)

7) Os 2/5 de um número correspondem a 80. Qual é esse número? (R: 200)

8) Os ¾ do que possuo equivalem a R$ 900,00. Quanto possuo? (R: 1200)

9) Um time de futebol marcou 35 gols, correspondendo a 7/15 do total de gols do campeonato. Quantos gols foram marcados no campeonato? (R: 75)

10) Para encher 1/5 de um reservatório são necessários 120 litros de água. Quanto é a capacidade desse reservatório? (R: 600 litros)

11) Se 2/9 de uma estrada corresponde a 60 km, quantos quilômetros tem essa estrada?
(R: 270 km)

12) Para revestir ¾ de uma parede foram empregados 150 azulejos. Quantos azulejos são necessários para revestir toda a parede? (R: 200)

13) De um total de 240 pessoas,1/8 não gosta de futebol. Quantas pessoas gostam de futebol?
(R: 210)

14) Eu fiz uma viagem de 700 km. Os 3/7 do percurso foram feitos de automóvel e o restante de ônibus. Que distancia eu percorri de ônibus? (R: 400 km)

15) Numa prova de 40 questões um aluno errou ¼ da prova. Quantas questões ele acertou?
(R: 30 )

16) Numa classe de 45 alunos, 3/5 são meninas. Quantos meninos há nessa classe? (R: 18)

17) Um brinquedo custou R$ 152,10,. Paguei 1/6 do valor desse objeto. Quanto estou devendo?
(R: 126,75)


NÚMEROS DECIMAIS


FRAÇÃO DECIMAL


Chama-se fração decimal toda fração cujo denominador é 10 ou potência de 10 ex 10, 100, 100...

como:

a) 7/10
b) 3/100
c) 27/1000

NÚMEROS DECIMAIS

a) 7/10 = 0,7
b) 3/100 = 0,03
c) 27/1000 = 0,027

nos números decimais , a virgula separa a parte inteira da parte decimal

LEITURA DO NÚMERO DECIMAL

Para ler um, número decimal, procedemos do seguinte modo:

1°) Lêem -se os inteiros

2°) Lê-se a parte decimal, seguida da palavra:

décimos - se houver uma casa decimal
centésimos - se houver duas casas decimais
milésimos - se houver três casas decimais

exemplos:

a) 5,3 - lê-se cinco inteiros e três décimos
b) 1,34 - lê-se um inteiro e trinta e quatro centésimos
c) 12,007 - lê-se doze inteiros e sete milésimos

quando a parte inteira for zero, lê-se apenas a parte decimal

a) 0,4 - lê-se quatro décimos
b) 0,38 - lê-se trinta e oito centésimos

TRANSFORMAÇÃO DE FRAÇÃO DECIMAL EM NÚMERO DECIMAL

Para transformar uma fração decimal em número decimal, escrevemos o numerador e separamos, à direita da virgula, tantas casas quanto são os zeros do denominador

exemplos:

a) 42/10 = 4,2
b) 135/100 = 1,35
c) 135/1000 = 0,135

Quando a quantidade de algarismos do numerador não for suficiente para colocar a vírgula, acrescentamos zeros à esquerda do número.

exemplo:

a) 29/1000 = 0,029
b) 7/1000 = 0,007


EXERCÍCIOS ,

1) transforme as frações em números decimais

a) 3/10 = (R: 0,3)
b) 45/10 = (R: 4,5)
c) 517/10 = (R:51,7)
d) 2138/10 = (R: 213,8)
e) 57/100 = (R: 0,57)
f) 348/100 = (R: 3,48)
g) 1634/100 = (R: 16,34)
h) 328/ 1000 = (R: 0,328)
i) 5114 / 1000 = (R: 5,114)
j) 2856/1000 = (R: 2,856)
l) 4761 / 10000 = (R: 0,4761)
m) 15238 /10000 = (R: 1,5238)

2) transforme as frações em números decimais

a) 9 / 100 = (R: 0,09)
b) 3 / 1000 = (R: 0,003)
c) 65 /1000 = (R: 0,065)
d) 47 /1000 = (R: 0,047)
e) 9 / 10000 = (R: 0,0009)
f) 14 / 10000 = (R: 0,0014)



TRANSFORMAÇÃO DE NÚMERO DECIMAL EM FRAÇÃO

Procedimentos:

1) O numerador é um número decimal sem a virgula
2) O denominador é o número 1 acompanhado de tantos zeros quantos forem os algarismos do número decimal depois da vírgula.

exemplos:

a) 0,7 = 7/10
b) 8,34 / 834 /100
0,005 = 5/ 1000

EXERCÍCIOS

1) Transforme os números decimais em frações

a) 0,4 = (R: 4/10)
b) 7,3 = (R: 73/10)
c) 4,29 = (R: 429/100)
d) 0,674 = (R: 674/1000)
e) 8,436 = (R: 8436/1000)
f) 69,37 = (R: 6937/100)
g) 15,3 = (R: 153/10)
h) 0,08 = (R: 8/100)
i) 0,013 = (R: 13/1000)
j) 34,09 = (R: 3409/100)
l) 7,016 = (R: 7016/1000)
m) 138,11 = (R: 13811/100)



OPERAÇÕES COM NÚMEROS DECIMAIS

ADIÇÃO E SUBTRAÇÃO

Colocamos vírgula debaixo de vírgula e operamos como se fossem números naturais>

exemplo

1) Efetuar 2,64 + 5,19

2,64
5,19 +
----
7,83

2) Efetuar 8,42 - 5,61

8,42
5,61 -
----
2,81

Se o número de casas depois da virgula for diferente, igualamos com zeros à direita

3) Efetuar 2,7 + 5 + 0,42

2,70
5,00 +
0,42
----
8,12

4) efetuar 4,2 - 2,53

4,20
2,53 -
------
1,67


EXERCÍCIOS

1) Calcule

a) 1 + 0,75 = (R: 1,75)
b) 0,8 + 0,5 = (R: 1,3)
c) 0,5 + 0,5 = (R: 1,0)
d) 2,5 + 0,5 + 0,7 = (R: 3,7)
e) 0,5 + 0,5 + 1,9 + 3,4 = (R:6,3)
f) 5 + 0,6 + 1,2 + 15,7 = (R: 22,5)

2) Efetue as adições

a) 3,5 + 0,12 = (R: 3,62)
b) 9,1 + 0,07 = (R: 9,17)
c) 4,7 + 12,01 = (R: 16,71)
d) 2,746 + 0,92 = (R: 3,666)
e) 6 + 0,013 = (R: 6,013)
f) 4 + 0,07 + 9,1 = (R: 13,17)
g) 16.,4 + 1,03 + 0,72 = (R: 18,15)
h) 5,3 + 8,2 + 0,048 = (R: 13,548)
i) 0,45 + 4,125 + 0,001 = (R: 4,576)

3) Efetue as subtrações

a) 8,2 - 1,7 = (R: 6,5)
b) 5 - 0,74 = (R: 4,26)
c) 4,92 - 0,48 = (R: 4,44)
d) 12,3 - 1,74 = (R: 10,56)
e) 3 - 0,889 = (R: 2,111)
f) 4,329 - 2 = (R: 2,329)
g) 15,8 - 9,81 = (R: 5,99)
h) 10,1 - 2,734 = (R: 7,366)

4) Calcule o valor das expressões

a) 5 - 1,3 + 2,7 = (R: 6,4)
b) 2,1 - 1,8 + 0,13 = (R: 0,43)
c) 17,3 + 0,47 - 8 = (R: 9,77)
d) 3,25 - 1,03 - 1,18 = (R: 1,04)
e) 12,3 + 6,1 - 10,44 = (R: 7,96)
f) 7 - 5,63 + 1,625 = (R: 2,995)

5) Calcule o valor das expressões

a) (1 + 0,4) - 0,6 = (R: 0,8)
b) 0,75 + ( 0,5 - 0,2 ) = (R: 1,05)
c) ( 5 - 3,5 ) - 0,42 = (R: 1,08)
d) 45 - ( 14,2 - 8,3 ) = (R: 39,1)
e) 12 + ( 15 - 10,456) = (R: 16,544)
f) 1,503 - ( 2,35 - 2,04) = (R: 1,193)
g) ( 3,8 - 1,6) - ( 6,2 - 5,02) = (R: 1,04)
h) ( 7 + 2,75 ) - ( 0,12 + 1,04) = (R: 8,59)





MULTIPLICAÇÃO DE NÚMEROS DECIMAIS

Multiplicamos os números decimais como se fossem números naturais. O números de casas decimais do produto é igual a soma do número de casas decimais dos fatores.

Exemplo

1) efetuar 2,45 x 3,2

2,46
x3,2
-----
7,872

2) efetuar 0,27 x 0,003

x0,27
0,003
-------
0,00081

EXERCÍCIOS

1) Efetue as multiplicações

a) 2 x 1,7= (R: 3,4)
b) 0,5 x 4 = (R: 2)
c) 0,5 x 7 = (R: 3,5)
d) 0,25 x 3 = (R: 0,75)
f) 6 x 3,21 = (R: 19,26)

2) Efetue as multiplicações

a) 5,7 x 1,4 = (R: 7,98)
b) 0,42 x 0,3 = (R: 0,126)
c) 7,14 x 2,3 = (R: 16,422)
d) 14,5 x 0,5 = (R: 7,25)
e) 13,2 x 0,16 = (R 2,112)
f) 7,04 x 5 = (R:35,2)
g) 21,8 x 0,32 = (R: 6,976)
h) 3,12 x 2,81 = (R: 8,7672)
i) 2,14 x 0,008 = (R: 0,01712)
j) 4,092 x 0,003 = (R: 0,012276)


3) Determine os seguintes produtos:

a) 0,5 x 0,5 x 0,5 = (R: 0,125)
b) 3 x 1,5 x 0,12 = (R: 0,54)
c) 5 x 0,24 x 0,1 = (R: 0,120)
d) 0,2 x 0,02 x 0,002 = (R: 0,000008)
e) 0,7 x 0,8 x 2,1 = (R: 1,176)
f) 3,2 x 0,1 x 1,7 = (R: 0,544)

4) calcule o valor das expressões

a) 3 x 2,5 - 1,5 = (R: 6)
b) 2 x 1,5 + 6 = (R: 9)
c) 3,5 x 4 - 0,8 = (R: 13,2)
d) 0,8 x 4 + 1,5 = (R: 4,7)
e) 2,9 x 5 - 8,01 = (R: 6,49)
f) 1,3 x 1,3 - 1,69 = (R: 0)


MULTIPLICAÇÃO POR POTENCIA DE 10

Para multiplicar por 10, 100, 1000, etc, basta deslocar a vírgula para a direita, uma, duas, três, etc casas decimais.

exemplos

a) 3,785 x 10 = 37,85
b) 3,785 x 100 = 378,5
c) 3,785 x 1000 = 3785
d) 0,0928 x 100 = 9,28

EXERCÍCIOS

1) Efetue as multiplicações:

a) 4,723 x 10 = (R: 47,23)
b) 8,296 x 100 = (R: 829,6)
c) 73,435 x 1000 = ( R: 73435)
d) 6,49 x 1000 = (R: 6490)
e) 0,478 x 100 = (R: 478)
f) 3,08 x 1000 = (R: 3080)
g) 0,7 x 1000 = (R: 700)
h) 0,5 x 10 = (R: 5)
i) 3,7 x 1000 = (R: 3700)
j) 0,046 x 10 = (R: 0,46)




DIVISÃO

Igualamos as casas decimais do dividendo e do divisor e dividimos como se fossem números naturais.

exemplos

1) efetuar 17,568 : 7,32

Igualando as casas decimais fica : 17568 : 7320 = 2,4

2) Efetuar 12,27 : 3

Igualando as casas decimais fica: 1227 : 300 = 4,09


exercícios

1) Efetuar as divisões:

a) 38,6 : 2 = (R: 19,3)
b) 7,6 : 1,9 = (R: 4)
c) 3,5 : 0,7 = (R: 5)
d) 17,92 : 5,6 = (R: 3,2)
e) 155 : 0,25 = ( R: 620)
f) 6,996 : 5,83 = (R: 1,2)
g) 9,576 : 5,32 = (R: 1,8)
h) 2,280 : 0,05 = (R: 45,6)
i) 1,24 : 0,004 = (R: 310)
j) 7,2624 : 2,136 = (R: 3,4)

2) Calcular o valor das expressões

a) 7,2 : 2,4 + 1,7 = (R: 4,7)
b) 2,1 + 6,8 : 2 = (R: 5,5 )
c) 6,9 : 3 - 0,71 = (R: 1,59)
d) 8,36 : 2 - 1,03 = (R: 3,15)
e) 1,6 : 4 - 0,12 = (R: 0,28)
f) 8,7 - 1,5 : 0,3 = (R: 3,7)



DIVISÃO POR POTÊNCIA DE 10

Para dividir por 10, 100, 1000, etc, basta deslocar a vírgula para a esquerda, uma, duas três , etc casas decimais.


exemplos

a) 379,4 : 10 = 37,94
b) 379,4 : 100 = 3,794
c) 379,4 : 1000 = 0,3794
d) 42,5 ; 1000 = 0,0425


EXERCÍCIOS
1) Efetuar as divisões

a) 3,84 : 10 = (R: 0,384)
b) 45,61 : 10 = (R: 4,561)
c) 182,9 : 10 = ( R: 18,29)
d) 274,5 : 100 = (R: 2,745)
e) 84,34 : 100 = (R: 0,8434)
f) 1634,2 : 100 = (R: 16,342)
g) 4781,9 : 1000 = ( R: 4,7819)
h) 0,012 : 100 = (R: 0,0012)
i) 0,07 : 10 = (R: 0,007)
j) 584,36 : 1000 = (R: 0,58436)

2) efetue as divisões

a) 72 : 10² = (R: 0,72)
b) 65 : 10³ = ( R: 0,065)
c) 7,198 : 10² = (R: 0,07198)
d) 123,45 : 10⁴= (R: 0,012345)



POTENCIAÇÃO

A potenciação é uma multiplicação de fatores iguais

Exemplos:

1) (1,5)² = 1,5 x 1,5 = 2,25
2) (0,4)³ = 0,4 x 0,4 x 0,4 = 0,064

vamos lembrar que: são válidas as convenções para os expoentes um e zero.

Exemplos

1) (7,53)¹ = 7,53
2) ( 2,85)⁰ = 1



EXERCÍCIOS 


1) Calcule as potências

a) ( 0,7)² = (R: 0,49)
b) (0,3) ² = (R: 0,09)
c) (1,2) ² = (R: 1,44)
d) (2,5) ² = (R: 6,25)
e) (1,7) ² = (R: 2,89)
f) (8,4) ² = (R:70,56)
g) (1,1)³ = ( R: 1,331)
h) (0,1)³ = (R: 0,001)
i) (0,15) ² = (R:0,0225)
j) (0,2)⁴= (R: 0,0016)

2) Calcule o valor das expressões

a) (1,2)³ + 1,3 =  (R:3,028)
b) 20 – (3,6) ² = (R: 7,04)
c) (0,2) ² + (0,8) ² = (R: 0,68)
d) (1,5) ² - (0,3) ² = (R: 0,2025)
e) 1 – (0,9) ² = (R: 0,19)
f) 100 x (0,1)⁴ = (R: 0,01)
g) 4² : 0,5 – (1,5) ² = (R: 30,5)
h) ( 1 – 0,7) ² + ( 7 – 6)⁵ = (R: 1,09)


TRANSFORMAÇÃO DE FRAÇÕES EM NÚMEROS DECIMAIS

Para transformar uma fração em números decimais, basta dividir o numerador pelo denominador (obs o numerador é o números de cima da fração e o denominador o números debaixo)

Exemplos

transformar em números decimais as frações irredutíveis

1) 5/4 = 5 : 4 = 1,25 que será um, número decimal exato
2) 7/9 = 7 : 9 = 0,777... é uma dizima periódica simples
3) 5/6 = 5: 6 = 0,8333...... é uma dizima periódica composta

outros exemplos

a) 4,666... dízima periódica simples (período 6)
b) 2,1818....dízima periódica simples ( período 18)
c) 0,3535.... dízima periódica simples (período 35)
d) 0,8777.... dízima periódica composta (período 7 e parte não periódica 8)
e) 5,413333.... dízima periódica composta (período 3 e parte não periódica 41)

EXERCÍCIOS

1) Transforme em números decimais as frações:

a) 10/4 = (R: 2,5)
b) 4/5 =  (R: 0,8)
c) 1/3 =  (R: 0,333)
d) 5/3 = (R: 1,666) 
e) 14/5 = (R: 2,8)
f) 1/6 = (R: 0,16)
g) 2/11 = (R: 0,1818)
h) 43/99 = (R: 0,4343)
i) 8/3 = (R: 2,666)

2) Transforme as frações decimais em números decimais :

a) 9/10 = (R: 0,9)
b) 57/10 = (R: 5,7)
c) 815/10 = (R: 81,5)
d) 3/100 = (R: 0,03)
e) 74/100 = (R: 0,74)
f) 2357/1000 = (R: 2,357)
g) 7/1000 = (R: 0,007)
h) 15/10000 = (R: 0,0015)
i) 4782/10000 = (R: 0,4782)

GEOMETRIA INTUITIVA

76 Comments:

Blogger Adriano Holtz said...

Olá!
Muito boa a sua iniciativa! Tem teoria, simples, passo a passo, e bastante prática.
Até pessoas que tem dificuldade com matemática, como eu, podem aprender sozinhas aqui.
Continue estas postagens! Tenho certeza que muita gente irá se beneficiar com isto.

12:01 AM  
Blogger Adriano Holtz said...

Olá novamente.
Continuo estudando pelo seu blog! Se me permite, tenho uma sugestão, coloque, no fim de cada post, as respostas dos exercícios. Eu fiz alguns e senti necessidade destas para verificar se não tinha errado nada.
Até breve.

10:49 PM  
Blogger Suelen de Santan said...

Oi amigo!!! Gostei do seu conteudo peguei algumas coisas pra trabalhar com uns alunos da aula de reforço!!!
Valeu!!e obrigada!!

4:46 PM  
Blogger shirlei said...

Olá! td bem?
Adorei o seu blog. Parabéns!
Vc poderia postar as respostas?
Obrigada

2:48 PM  
Blogger *Leila* said...

Parabéns!!!!!!!!!!!!!!!!um ótimo conteúdo!"!!!!!!!!!!!!!!!!!!!me ajudou com a minha filhota!!!!!!!!! brigadão!

11:07 AM  
Blogger ñ said...

jrfsfbjsegfkbefbeafeab

1:14 AM  
Blogger Makson Silva said...

Cara seu blog me ajudou pra caralho mas tem uma coisa,cole as respostas em todas as questões para ficar mais fácil de se aprender,mas a iniciativa é muito boa,continue assim!!

3:04 AM  
Blogger #Manu said...

Tinha um trabalho e fiz pelo seu blog...
Valeu!!!!!!

5:55 PM  
Blogger Sérgio said...

Parabéns, excelente trabalho!

7:26 PM  
Blogger Laís Fernades said...

Muito legal!! coisas simples,reduzidas e mas práticas.Encontrei e solucionei o que eu queria.obrigado...

11:53 AM  
Blogger Alê said...

Olá, amigo. Parabéns por sua iniciativa, excelente conteúdo. Era tudo o que eu precisava. Obrigada e continue, por favor. Que Deus te abençoe e te guarde.

7:26 AM  
Blogger João Lucio said...

PARABÉNS amigo!!Simples e descomplicado.Estava há mais de 6 anos sem ver essa matéria, agora farei um concurso e em poucos minutos compreendi tudo.Melhor do que olhar em livros cheios de conteúdo que só enrolam.Abraços.

9:47 AM  
Blogger M W said...

parabens mestre!

10:05 AM  
Blogger M W said...

parabens mestre!

10:06 AM  
Blogger M W said...

parabens mestre!

10:06 AM  
Blogger Pedro said...

ufa adorei esse site eu aprendo muito nele dei um grande passo na escola em matemática.
Coloque, no fim de cada post, as respostas dos exercícios sente dificuldade em alguns e não sabia se tava certo.thau até depois

2:35 PM  
Blogger li said...

Muito bommmmmm.....voce é otimo...

1:03 PM  
Blogger li said...

Muito bommmmmm.....voce é otimo...

1:03 PM  
Blogger ESTRELA KAROLINO said...

muito bom,ou aprende oui nao entende mais è otimo.abraços

6:41 PM  
Blogger evandro e vanessa said...

Este comentário foi removido pelo autor.

2:26 PM  
Blogger evandro e vanessa said...

Obrigada otimo conteudo ...me ajudou bastante

2:26 PM  
Blogger Jully said...

Amei esse site, no dia 15/11 irei fazer uma prova e nesse site tem tudo que eu preciso para fazer uma boa prova, agradeço !!

5:28 PM  
Blogger Hiago Oliveira said...

Poxa muito obrigado, seu blog é realmente muito bom

12:00 PM  
Blogger Sostenes Sobreira said...

Parabens Chico Sobreira

2:00 AM  
Blogger gy said...

Muito bom mesmo , me ajudou bastante,

7:11 PM  
Blogger elisete said...

GOSTEI MUITO,EU POSSO AGORA
PODER TER AULAS DE REFORÇO EM CASA.
OBG POR SUA DEDICAÇÃO.

10:32 PM  
Blogger stminie said...

nossa seu blog me ajudou muito, pois faz tanto tempo que parei os estudos havia coisas que nem me lembrava mais.valeu

7:00 PM  
Blogger Vanessa*_*## said...

nossa o blog é d+ me ajudou muiito ...

2:30 PM  
Blogger Tiago Lopes said...

Matéria muito boa, me ajudou bastante! Recomendado!

7:14 PM  
Blogger Torres said...

Eu nunca vi nada tão explicado assim. To boba!! Obrigada mesmo. Sei q esse é o básico, mas nem esse básico eu sabia de verdade.

7:16 PM  
Blogger Elinha said...

Eu adorei esse site, a matemática de maneira simples e acessível ao internauta que precisa elaborar exercícios para os seus alunos. Parabéns!!!

10:45 AM  
Blogger diogo said...

valeu mesmo este blog é demais
me ajudou muito agradeço
ao dono............

12:24 PM  
Blogger sol santos said...

muito bom facil e prático. parabéns!

12:22 AM  
Blogger Eliezita Silva said...

Olá! depois de gastar tanto dinheiro com video aulas entre outros.Encontrei vocês.Extamentente o que estava procurando.Parabéns!!! Continue trabalhando, este site é maravilhoso!!!

11:27 PM  
Blogger ivan said...

muito legal eu to na quarta serie mais a prof ja ensina isso
valeu!!!!

9:00 PM  
Blogger Me said...

Sua teoria é ótima, mas em alguns exercícios a resposta não bateu, mas mesmo assim valeu pela iniciativa!

9:33 PM  
Blogger Sam Mota said...

entrei na faculdade de arquitetura e estou encontrando muita dificuldade na matematica basica, por esta tanto tempo parada.. seu blog foi a minha savalção.. rs
Obrigada

7:31 PM  
Blogger filiko said...

Fui estudar diereito para não ter que aplicar matemática. Olhha minha surpresa ao ter que realizar um formal de partilha... apareceu a tal de fração. Foi muito bom descobrir o seu Blog.

Luis Alberto

3:40 PM  
Blogger blogger Teixeira-pb said...

como e que responde 2,16=o,4-1,6=

8:18 AM  
Blogger gabi2110 said...

adorei!!!vou fazer uma prova amanhã e ainda não tinha entendido direito a matéria e em minutos vc me explicou o q minha professora demorou várias aulas para me explicar (he... não conseguiu)!!!!

4:05 PM  
Blogger Keamelly said...

Muito bom mais ajudou mt na matemática que eu tinha muita dificuldade continue com essas postagens agora com essas explicações passei em matemática com 10

8:59 PM  
Blogger Paulinho_scp said...

Nossa perfeito, deixo aqui meus parabéns, pois pude utilizar para exemplificar varias questões aos meus alunos. Continue assim, se possível passar algo como logaritmos, raiz quadrada, ou achar números decimais com rais; exemplo 6,25raiz de 3 (6,25√3). Forte abraço.

11:55 AM  
Blogger Paulinho_scp said...

Meus parabéns, seu Blog esta de mais, pude passar e exemplificar aos meus alunos utilizando seus exemplos. Parabéns, se for possível deixe exemplos 6,25√3)

12:00 PM  
Blogger Mascote[22CMD] said...

Po cara voce ke posto aee esses exemplos de Operaçao de Numeros Fraçionais e Decimais po ajudo muito eu nao conseguia entender mas quando eu olhei que intendi como era com os exemplos eu aprendir e eu passei de ano vlw aee cara Abraços !!!

11:39 AM  
Blogger beatriz said...

muito obrigado!!me ajudou muito ,e e muito explicado,muito obrigada mesmo.

11:19 AM  
Blogger beatriz said...

muito obrigada !! me ajudou muito ...

11:19 AM  
Blogger beatriz said...

muito obrigado!!me ajudou muito ,e e muito explicado,muito obrigada mesmo.

11:20 AM  
Blogger suellen cristina said...

oi eu sou suellen de belem PA, gostei muito da matéria agora toda vez que estiver em duvida volto aqui...Voce poderia botar as respostas.

10:02 AM  
Blogger suellen cristina said...

oi eu sou suellen de belem PA, gostei muito da matéria agora toda vez que estiver em duvida volto aqui...Voce poderia botar as respostas.

10:03 AM  
Blogger suellen cristina said...

oi eu sou suellen de belem PA, gostei muito da matéria agora toda vez que estiver em duvida volto aqui...Voce poderia botar as respostas.

10:03 AM  
Blogger gta 4 said...

vai caca nem essa resposta que eu quero

9:43 AM  
Blogger juliana said...

Ainda bem que existem pessoas bem intencionadas como vc ,que pensa no seu semelhante. gostei mto de sua iniciativa pensando no seu semelhante, com certeza ,ganhará um pedacinho do céu. Deus te abençoe continue assim!!!m

juliana guarapuava

9:28 PM  
Blogger juliana said...

Ainda bem que existem pessoas bem intencionadas como vc que pensa no seu semelhante. Otima iniciativa, continue assim!!

9:30 PM  
Blogger ivanilda said...

Seu blog me ajuda muito. Parabens.

4:09 PM  
Blogger Leitura para crianças said...

Seu blog esta me ajudando muito para reelembrar o conteudo, porem tive duvida no exercicio de adiçao de fraçoes do item b: como chegou no resultado de 3/4+1/2= 5/4 e o
e c) 2/4+2/3=14/12 meu mmc nao chegou a este resultado, a alguma regra que eu tenha esquecido? meu e mail é de.cerejinha@terra.com.br

11:09 AM  
Blogger Leitura para crianças said...

Seu blog esta me ajudando muito para reelembrar o conteudo, porem tive duvida no exercicio de adiçao de fraçoes do item b: como chegou no resultado de 3/4+1/2= 5/4 e o
e c) 2/4+2/3=14/12 meu mmc nao chegou a este resultado, a alguma regra que eu tenha esquecido? meu e mail é de.cerejinha@terra.com.br

11:10 AM  
Blogger Helena said...

Seu blog me ajudou muito a reelembrar esta matéria para prestar concurso. Muito Obrigado!

7:42 PM  
Blogger Anderson Martins said...

Obrigado meu querido!
Graças a vc pude ajudar minha filha com o dever de casa!
Vc poderia me ajudar com estas questões:
(7/5)+(1,2)=

(-1/3)+(+2/5)=

(+1/2)-(+3/5)-(0,8)=

obs:. estamos nos confundindo um pouco com a sinalização!

Anderson M.

6:31 PM  
Blogger Joyce said...

Este comentário foi removido pelo autor.

11:50 PM  
Blogger Joyce said...

Adorei o blog

mas nao me ajudou porque eu precisava de problemas decimais

Tipo: Maria tem...

11:52 PM  
Blogger Bernardo Guimarães Silveira said...

Parabéns, divulgar o conhecimento com qualidade e acessibilidade é uma dádiva. Me foi super útil, OBRIGADO !

3:44 PM  
Blogger Bernardo Guimarães Silveira said...

Parabéns, divulgar o conhecimento com qualidade e acessibilidade é uma dádiva. Me foi super útil, OBRIGADO !

3:45 PM  
Blogger Tata said...

Olá

Adorei o seu blog é muito bom me ajudou muito,só peço que atente pois ha alguns exercícios que estão com as respostas incorretas,se você puder corrigi-los,pois atrapalha nos estudos principalmente quem tem dificuldade pode achar que esta fazendo errado quando na verdade é o exercício que esta errado.

Segue os que eu vi,não sei se ha outros:

Transformação de fração em número decimal :
Exercício 1 - F e G estão incorretos.

Multiplicação de números decimais:
Exercício 3 - B,E,F estão incorretos.

Potenciação:
Exercício 1 - I está incorreto.

DE qualquer forma PARABÉNS pelo Blog...

Abs

2:42 PM  
Blogger jai any said...

aplausos para você.

10:39 AM  
Blogger jai any said...

aplausos para você.

10:40 AM  
Blogger Oseias de Castro said...

Adoramos... ajudou a estudar pra prova do militar.

2:08 PM  
Blogger Oseias de Castro said...

Adoramos ajudou a minha filha a estudar pra prova do militar.

2:10 PM  
Blogger Dalila Goncalves said...

Parabens pela iniciativa.....é útil para minha filha e pra mim tbm.....obrigada!

7:29 PM  
Blogger Rafa Sama said...

valeu pela ajuda, porém, varias pessoas pediram para por as respostas, e, você pôs, mas poderia colocar em um tipo de gabarito no final do post ao invés de na frente do exercício???? valeu brigadão tchau ^^

10:32 AM  
Blogger miranda flores flores said...

adorei demais esse blog, tenho certeza que vai me ajudar muito no concurso que almejo fazer.
queria saber se existe mas conteúdos desses, para estudar? parabens..........

3:29 PM  
Blogger edna gomes da rocha eduardo said...

bom demais relembrei muita coisa que eu tinha esquecido

9:20 AM  
Blogger joaobatistaalvespinheirojunior joaozinho said...

Gostei muito desas expressões numéricas pois tira todas as nossas duvidas

2:11 PM  
Blogger Malu DalCol said...

Muito bom seu blog! Estou estudando por ele para um concurso!
Valeu!

11:02 AM  
Blogger Malu DalCol said...

Muito bom seu blog! Estou estudando por ele para um concurso!
Valeu!

11:02 AM  
Blogger wagner macedo said...

Valeu irmão, ótimas aulas. Simples e fácil.
Abraço!

10:08 PM  
Blogger Alécio Correia said...

Muito legal me ajudou bastante :¬)
;¬)
Continua postando comentarios;)

10:29 AM  

Postar um comentário

<< Home